
Software Configuration &
Change Management

A White Paper:
Ten Things to Consider

Introduction
Although most Software Configuration & Change Management (SCCM) solutions address the
common issues of source control, many do not address the entire SCCM process requirements. This
white paper will explore ten important aspects that are worth considering before proceeding with
the selection/implementation of a SCCM solution.

#1 The change process is universal
We don’t always think about Change Management as being a complex process. However,
given the diversity of today’s international laws and regulations, it’s very complex most of the
time. Let’s define four different “states” pertinent to the change process.

 Every change process commences with something already in existence. That can be
called the production state or the monitoring state.

 Because something is broken or no longer provides the full functionality required, a
component must depart from the monitoring state and enter the requirements state.
There we discover what is required to repair or enhance the component.

 After the requirements are defined and documented, we enter the development
state where the component can be fixed; that’s where the component resides until it
is fully repaired.

 Finally, after the fix is complete, the component must be inserted back into the
production state. That insertion is accomplished in the deployment state (sometimes
it’s called the transfer state).

Whatever you set out to change, whether it be software or anything else, these four change
states are always the same. There is merit to making sure these four states are well defined. In
like manner, eengineers are taught to break down complex matters to their component parts
and when each piece is understood, the assembly is probably understandable too.

Click here for information about Tight as a Drum software.

Page 1 of 6

milt
compass stamp no logo

http://www.upisox.com/BPCSsoftware/TightasaDrum-s.pdf
www.unbeatenpath.com/compass

#2: Desired SCCM result: documentation
In an automated SSCM process, each of the change states is typically managed by
electronic documents. For example, if a user reports a bug, that is logged as a
problem. Based on this problem the process will issue a change request. In a
sophisticated environment, this is flagged in the problem document and details
such as the date/time the change request was raised will be logged.

In most organizations, the change request must typically pass several review stages before
authorization to assigning tasks to our developers is given. All this activity also requires proper
and thorough documentation (“logging”).

After the developers have received their assignments, the first chore is to figure out which
software components must change to accomplish the requirements. Before allowing any
change, a thorough copy must be made of the previous version so that a roll back can occur, in
case something goes haywire. This previous version copy is also useful a useful benchmark to
measure differences between the beginning state and subsequent versions.

After programming revisions are completed, the testers can perform their work. All of those
testing efforts and results should be logged by an automatic SCCM system. Final testing signoff
must also be logged before the change can enter the deployment state.

If your enterprise adopts this SCCM process using at tool like Tight as a Drum® – TD/OMS,
then after a period of time you can assemble some very compelling software change
management data for end users, for developers, and/or for your auditors (Sarbanes-Oxley or
any other flavor).

Here’s an example of a
drill down view from the
TD/OMS system for a
program called PGM01.
This display can be
created because the
SCCM process provides
automatic documentation.

Page 2 of 6

milt
compass stamp no logo

www.unbeatenpath.com/compass
www.unbeatenpath.com/software/taad/TightasaDrum.pdf

#3 Keeping bugs as inexpensive as possible
If you can address a bug early in the development life cycle, it’s going to be a much
less expensive bug. IT professionals know this is true, but companies don’t act like
they fully believe it. Why? Because companies don’t measure this with a post-
completion bug cost analysis.

Various studies have arrived at the data
depicted in this diagram. If you fix a bug
during the Test phase it will have a relative
cost factor of 17. However, fixing the same
bug later in production will have a relative
cost factor of 105 measured on the same
scale.

Here’s the rationale behind the study
findings:

Typically, when a serious bug is reported in
production: anyone who can contribute to
the solution drops attention to the productive
tasks they’d been working on and re-focuses
on gathering evidence about the bug and
addressing the consequences of that bug. It
consumes time that could have been spent
more productively. That’s a real opportunity
cost.

So, if you must fix a bug in production
 instead of finding it in test, then that bug
will have a cost impact which is seven times
greater.

Page 3 of 6

milt
compass stamp no logo

www.unbeatenpath.com/compass

#4 Challenges of multi-tier software development
An increasing percentage of IT shops develop for multiple tiers. “Multiple tiers” simply
means that some code runs on a database backend server like the System i and other
code runs on another platform such as a Wintel application server or a desktop.

Blind spots are the major challenge of multi-tier development. Dependencies between software
components on the various platforms/operating systems can be (tragically) opaque. Without a
comprehensive SCCM system to help, how can a developer be sure he/she knows which web
application uses DB2-based data or which corporate data consolidations rely on recording
transactions a particular way?

When it is time to return finished work to the production state, a comprehensive SCCM system
must provide assurance that all the tiers will move over to production together. Furthermore, if
one platform fails to install, we must be prepared to roll back all platforms. That’s the way
TD/OMS operates.

#5 Multiple versions resurrect bugs
Many enterprises must maintain multiple versions of the same application. When you create
another version of your application, you replicate the bugs that exist in your original
version. Some enterprises don’t believe multiple versions are necessary, but their developers
still end up doing it that way for a variety of reasons. Here’s a hypothetical illustration:

Let’s say that your sophisticated product pricing/discounting module must be maintained to
reflect a new sales policy. The change involves important modifications to a substantial fraction
of the pertinent software components. Brian, one of your programmers, has been heads-down
working it.

In the mean time, one of your customers complains about a bug in the pricing calculations on
his latest invoice. The complaint is judged to have implications beyond that single customer.
Therefore, immediate remedial attention is demanded. Kirsten is assigned to iron out the just-
reported invoicing complaint and her work is accomplished long before Brian’s much more
complicated pricing policy project can be finished.

Now, when Brian finishes the pricing policy changes and users give thumbs-up to the testing, his
programming work is deployed to production. But the objects Brian worked on won’t have
Kirsten’s fix in them. The net effect is an impression that bugs sometimes “rise from the dead.”

Page 4 of 6

milt
compass stamp no logo

www.unbeatenpath.com/compass

#6 A small change can generate a huge effect
The “butterfly effect” theory states that a butterfly flapping wings in Beijing can
cause a hurricane in Florida. Mathematicians call it the chaos theory: it describes
cause and effect relationships in complex systems (like the weather).

Let’s illustrate the theory with something more finite: an automobile engine.

If we randomly punch a hole in a pipe or if we remove several fasteners, what is the effect of
that change? Will something happen? Probably …. but exactly what will happen depends on
relationships between the pipe or the fasteners with other parts of the engine.

If the punctured pipe is in the supply chain of the windshield wiper fluid, then
the consequence of the change won’t be severe. If the loosened fasteners hold
the radiator together, then we have serious engine damage on the horizon.

The key to projecting the result of a change is knowing how the parts of the automobile engine
are related. In like manner, relationships between pieces of your software application must be
well defined to fully know (and prevent) unconstructive changes. We all know that minor
adjustments out in a remote corner of the system can cause chaos in the middle of a key
business process.

Given a comprehensive software configuration database (like that available in Tight as a Drum
– TD/OMS software), a developer can conduct a comprehensive impact analysis before
embarking on any change, no matter how small it may seem to be.

#7 Auditors are expensive
Since a crew of SOX auditors has been known to accumulate charges at the rate of $1,000 per
hour or more, the strategy is to get the auditors in and out of your office as quickly as
possible. The more quickly your enterprise can present requested information to them, the
the more quickly the auditors depart.

Diligent users of an SCCM system are well prepared for the question: “Can I see …. “ SCCM
systems like TD/OMS have drill-down reporting to answer any question the auditor can invent.

There’s another efficiency …… since all applications have used the same SCCM process, it’s not
necessary for the auditors to look at many change episodes. Confirmation of the validity of one
change episode confirms the validity of that process for all change episodes.

#8 Living in the eye of a hurricane
IT Departments have described their situation as living in the “eye of a hurricane.” By that
they mean that the front side of the eye-wall is a recent painful memory and it won’t take long
before the other eye wall arrives with gusts of wind that tear at them from the other direction.

A good SCCM system can help an IT Department cope with those wind gusts without losing
control of the code. The integrity and security of software changes is sustained despite the
chaos visited by these pressures:

 Business requirements born from the need to sustain a competitive advantage

 New technology to embrace the promise of improved productivity/reduced costs

 Regulatory demands

Page 5 of 6

milt
compass stamp no logo

www.unbeatenpath.com/compass

#9 Software bugs are invented in many departments
How many times have people in your organization immediately pointed a finger at the
programmers when a new bug disrupts a business process? In defense of the programmers,
why didn’t the users find that bug before it caused a mess in production?

Unbeaten Path’s opinion is that the bug hunt should get started back when the conceptual
design for a new system is developed and that bug hunt should stay active until senior
managers give the post-testing green light to deploy new code into production.

Testing is the answer to fewer bugs and testing efforts directed with an Impact Analysis tool
like the one available with TD/OMS deliver higher quality results. That kind of tool opens the
scope of the testing to include all system components which are related to the software change.

#10 Business rules are enforced by code
Reliability of business rule application is the most compelling reason why your enterprise
should consider implementing an SCCM system.

Your customers earn discounts based on a variety of parameters: total revenue over a period of
time, duration of business, seasonal programs, special end-of-quarter incentives, and so on.
The enforcement of these rules is captured in software.

Some enterprises have complex rules about the expiration date of products. Perhaps the sell
date by lot is based on the production date for a given product you are selling. The
enforcement of this rule is captured in software.

So if you change your software, you are changing the infrastructure in which your business
rules must perform their duties. One minor mistake can void your business rules.

With an SCCM system, you can ensure that your rules are kept …. and …. when something
inevitably requires adjustment, you will be able to quickly track down an emerging issue and
resolve the problem.

Questions ?
Click here to learn about the SCCM system we proudly market: Tight as a Drum – TD/OMS.

It would be a privilege to answer any questions about Software Change & Configuration
Management systems. Here’s Unbeaten Path International’s contact information:

Toll free North America: (888) 874-8008
International: (+USA) 262-681-3151
Send us an email (click here)

Page 6 of 6Page 6 of 6

milt
Mistral trademark

milt
compass stamp no logo

www.unbeatenpath.com/compass
www.unbeatenpath.com/software/taad/TightasaDrum.pdf
www.unpath.com/BPCS-ERP-LX-consulting-training/3204.pdf

